So, does this affect dual boot systems, if e.g. Windows is compromised, now that malware in the efi partition can compromise the Linux system next time it boots? Yikes!
I suppose in principle malware from one OS can attack the other anyway, even if the other is fully encrypted and/or the first OS doesn’t have drivers for the second’s filesystems: because malware can install said drivers and attack at least the bootloader - though that night have been protected by secure boot if it weren’t for this new exploit?
Yes, it can execute code regardless of OS installed because it persists on the Mainboard and loads before any OS, making it possible to inject code into any OS.
So, does this affect dual boot systems, if e.g. Windows is compromised, now that malware in the efi partition can compromise the Linux system next time it boots? Yikes!
I suppose in principle malware from one OS can attack the other anyway, even if the other is fully encrypted and/or the first OS doesn’t have drivers for the second’s filesystems: because malware can install said drivers and attack at least the bootloader - though that night have been protected by secure boot if it weren’t for this new exploit?
It would effect any UEFI based system regardless of OS from one of the affected manufacturers (which is basically all of them).
But I mean, this attack can go cross-OS? I.e. a successful attack on one OS on the dual boot machine can, via UEFI infect the other OS?
Yes, it can execute code regardless of OS installed because it persists on the Mainboard and loads before any OS, making it possible to inject code into any OS.