It’s not the blue emitting light that causes eyestrain on OLEDs, it’s the low frequency pwm used to control brightness. Basically all the pixels turn on and off a few hundred times a second, not slow enough for your brain to consciously notice it, but fast enough for your eyes to react to what is in effect a strobelight right in front of your face. That is how dimming works on an OLED.
You end up with devices that still cause headaches and dizziness because they flicker in this manner, but are “eyesafe certified” because they filter out the blue light right before bed.
That got me thinking: couldn’t that be solved by adding a layer in fron akin to a phosphor screen which “buffers” the light a bit thus bridging the switching which should reduce flickering?
That’s a good point, I don’t remember much ghosting on those. I guess it might depend on the phosphor used. If it was tuned to only fluoresce for that imperceptible off time and no longer it would probably work.
I guess it’s a similar idea to quantum dots, but if those quantum dots fluoresced for just a bit longer.
It’s not the blue emitting light that causes eyestrain on OLEDs, it’s the low frequency pwm used to control brightness. Basically all the pixels turn on and off a few hundred times a second, not slow enough for your brain to consciously notice it, but fast enough for your eyes to react to what is in effect a strobelight right in front of your face. That is how dimming works on an OLED.
You end up with devices that still cause headaches and dizziness because they flicker in this manner, but are “eyesafe certified” because they filter out the blue light right before bed.
That got me thinking: couldn’t that be solved by adding a layer in fron akin to a phosphor screen which “buffers” the light a bit thus bridging the switching which should reduce flickering?
I think this would result in some pretty intense ghosting and other undesirable artifacts.
Ghosting on CRTs wasn’t too bad, mostly imperceptible even
That’s a good point, I don’t remember much ghosting on those. I guess it might depend on the phosphor used. If it was tuned to only fluoresce for that imperceptible off time and no longer it would probably work.
I guess it’s a similar idea to quantum dots, but if those quantum dots fluoresced for just a bit longer.
OLED TVs and desktop monitors don’t use pwm, though they do have very slight brightness dips every refresh.
Afaik laptop and phone OLEDs do use (low frequency) pwm.
Eventually, there will something like a 1000 Hz monitor. At some point, it will refresh too fast for the brain to register any difference.
Fuck PWM, all my homies hate PWM